O domínio de uma função é o conjunto de todas as entradas possíveis da função. Por exemplo, o domínio de f(x)=x² são todos os números reais, e o domínio de g(x)=1/x são todos os números reais, exceto x=0.
O domínio da função exponencial são os números reais, e o contradomínio são os números reais positivos diferentes de zero. A sua lei de formação pode ser descrita por f(x) =ax, em que a é um número real positivo diferente de 1.
Domínio morfoclimático é uma classificação geográfica que engloba aspectos naturais como clima, hidrografia, vegetação, relevo e solo, predominantes em uma determinada área, e a forma como eles se relacionam entre si.
O domínio de uma função de A em B é sempre o próprio conjunto de partida, ou seja, D=A. Se um elemento x A estiver associado a um elemento y B, dizemos que y é a imagem de x (indica-se y=f(x) e lê-se “y é igual a f de x”).
Exemplo 1: f(2) = 2² = 4, a imagem da função quando x é igual a 2 é 4. Analisando a função de forma geral, para encontrarmos o conjunto imagem, sabemos que x² com x pertencente ao real sempre será um número positivo, logo, o conjunto imagem será: Im(f) = R+ (conjunto dos números reais positivos).