Para ter certeza de que uma equação é trinômio quadrado perfeito, observe se b = 2k e c = k2(não se esqueça de que “a”, “b” e “c” são coeficientes da equação do segundo grau e 2k e k2 são coeficientes do produto notável). A equação desse exemplo possui a = 1, b = 2·9 e c = 92.
Completamento de quadrados passo-a-passo
Exemplo 1. Temos uma equação do segundo grau e precisamos completar quadrados. Começamos movendo o termo constante para o lado direito da equação. Nós completamos quadrados elevando metade do coeficiente do nosso termo x ao quadrado, e somando o resultado aos dois lados da equação.
Uma das técnicas usadas para resolver equações do segundo grau é o método conhecido como completar quadrados. Esse método consiste em interpretar a equação do segundo grau como um trinômio quadrado perfeito e escrever sua forma fatorada. Algumas vezes, esse simples procedimento já revela as raízes da equação.
Equações do segundo grau resultantes de um produto notável são conhecidas como trinômio quadrado perfeito. Para encontrar suas raízes, utilizaremos o método exemplificado abaixo: Exemplo: Calcule as raízes da equação x2 + 6x + 9 = 0. Um produto somente é igual a zero quando um de seus fatores é igual a zero.